The role of fulvic acid in improving soil

Fulvic acid is a humic substance, which can affect the nature of the soil, and promote the formation of a more stable agglomerate structure in the soil, so that the content of granules ≥ 0.25 mm in the soil is increased by 10-20%, and the content of organic matter is increased by 10%, so that the soil can maintain moisture. Increase ventilation, which is conducive to the growth of crops.

 Enhance the water retention of the soil.

Fulvic acid is a hydrophilic colloid with strong water absorption capacity. The maximum water absorption can exceed 500%. The weight of water absorbed from saturated atmosphere can be more than doubled, which is much larger than that of ordinary mineral colloid. The fulvic acid inhibits the transpiration of the crop, so that the soil water consumption rate is slowed down and the soil water content is correspondingly increased.

 Enhance the fertility of the soil.

The fulvic acid itself is an organic acid, which increases the dissolution of the mineral part of the soil, provides soil nutrients, and increases the effectiveness of nutrients through complexation. As an organic colloid, fulvic acid has positive and negative charges, which can adsorb anion and cation, so that these nutrients can be stored in the soil, not lost with water, improve the utilization rate of fertilizer, especially in sandy land.

Adjust pH of the soil solution.

The fulvic acid and the fulvic acid salt transform each other to form a buffer system, thereby regulating the pH of the soil solution.

Reduce soil salinity.

The colloidal structure formed by the complexation of fulvic acid and chelated metal cations in the soil and its porosity (larger specific surface) can adsorb ions or molecules in the soil solution and reduce the concentration of salt in the soil solution.
Biological action fulvic acid contains a variety of oxygen-containing functional groups, which determine its physiological activity, thereby regulating the life activities, promoting the growth and reproduction of beneficial bacteria, and inhibiting the number of harmful microorganisms; the carboxyl group and phenolic hydroxyl group in fulvic acid have certain Inhibit the role of the virus.